Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Emerg Infect Dis ; 29(4): 855-857, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36878014

RESUMO

We reconstructed the SARS-CoV-2 epidemic caused by Omicron variant in Puerto Rico by sampling genomes collected during October 2021-May 2022. Our study revealed that Omicron BA.1 emerged and replaced Delta as the predominant variant in December 2021. Increased transmission rates and a dynamic landscape of Omicron sublineage infections followed.


Assuntos
COVID-19 , Epidemias , Humanos , Porto Rico/epidemiologia , SARS-CoV-2/genética , COVID-19/epidemiologia
2.
Commun Med (Lond) ; 2: 100, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968047

RESUMO

Background: Puerto Rico has experienced the full impact of the COVID-19 pandemic. Since SARS-CoV-2, the virus that causes COVID-19, was first detected on the island in March of 2020, it spread rapidly though the island's population and became a critical threat to public health. Methods: We conducted a genomic surveillance study through a partnership with health agencies and academic institutions to understand the emergence and molecular epidemiology of the virus on the island. We sampled COVID-19 cases monthly over 19 months and sequenced a total of 753 SARS-CoV-2 genomes between March 2020 and September 2021 to reconstruct the local epidemic in a regional context using phylogenetic inference. Results: Our analyses reveal that multiple importation events propelled the emergence and spread of the virus throughout the study period, including the introduction and spread of most SARS-CoV-2 variants detected world-wide. Lineage turnover cycles through various phases of the local epidemic were observed, where the predominant lineage was replaced by the next competing lineage or variant after ~4 months of circulation locally. We also identified the emergence of lineage B.1.588, an autochthonous lineage that predominated in Puerto Rico from September to December 2020 and subsequently spread to the United States. Conclusions: The results of this collaborative approach highlight the importance of timely collection and analysis of SARS-CoV-2 genomic surveillance data to inform public health responses.

3.
Res Sq ; 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35075454

RESUMO

Puerto Rico has experienced the full impact of the COVID-19 pandemic. Since SARS-CoV-2, the virus that causes COVID-19, was first detected on the island in March of 2020, it spread rapidly though the island’s population and became a critical threat to public health. We conducted a genomic surveillance study through a partnership with health agencies and academic institutions to understand the emergence and molecular epidemiology of the virus on the island. We sampled COVID-19 cases monthly over 19 months and sequenced a total of 753 SARS-CoV-2 genomes between March 2020 and September 2021 to reconstruct the local epidemic in a regional context using phylogenetic inference. Our analyses revealed that multiple importation events propelled the emergence and spread of the virus throughout the study period, including the introduction and spread of most SARS-CoV-2 variants detected world-wide. Lineage turnover cycles through various phases of the local epidemic were observed, where the predominant lineage was replaced by the next competing lineage or variant after approximately 4 months of circulation locally. We also identified the emergence of lineage B.1.588, an autochthonous lineage that predominated circulation in Puerto Rico from September to December 2020 and subsequently spread to the United States. The results of this collaborative approach highlight the importance of timely collection and analysis of SARS-CoV-2 genomic surveillance data to inform public health responses.

4.
Emerg Infect Dis ; 27(11): 2971-2973, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34670646

RESUMO

We reconstructed the 2016-2017 Zika virus epidemic in Puerto Rico by using complete genomes to uncover the epidemic's origin, spread, and evolutionary dynamics. Our study revealed that the epidemic was propelled by multiple introductions that spread across the island, intricate evolutionary patterns, and ≈10 months of cryptic transmission.


Assuntos
Epidemias , Infecção por Zika virus , Zika virus , Evolução Molecular , Humanos , Porto Rico/epidemiologia , Zika virus/genética , Infecção por Zika virus/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...